Implementation of loglikelihood functions for ML estimation of regression parameters for different combinations of
exposure, mediator and outcome models. The functions are named according to the convention LogL."model.expl type""model.resp type"
where b
stands for binary probit regression and c
stands for linear regression.
LogL.bb(
par,
Rho,
X.expl = X.expl,
X.resp = X.resp,
outc.resp = outc.resp,
outc.expl = outc.expl
)LogL.bc(
par,
Rho,
X.expl = X.expl,
X.resp = X.resp,
outc.resp = outc.resp,
outc.expl = outc.expl
)
LogL.cb(
par,
Rho,
X.expl = X.expl,
X.resp = X.resp,
outc.resp = outc.resp,
outc.expl = outc.expl
)
LogL.cc(
par,
Rho,
X.expl = X.expl,
X.resp = X.resp,
outc.resp = outc.resp,
outc.expl = outc.expl
)
Vector of parameter values.
The value of the sensitivity parameter.
The model matrix (see model.matrix
) of model.expl
The model matrix (see model.matrix
) of model.resp
The outcome of model.resp
, a vector.
The outcome of model.expl
, a column matrix.
coefs.sensmed
, maxLik