key <- data.frame(
words = sample(letters),
polarity = rnorm(26),
stringsAsFactors = FALSE
)
(mykey <- as_key(key))
## Looking up values
mykey[c("a", "k")][[2]]
## Drop terms from key
update_key(mykey, drop = c("f", "h"))
## Add terms to key
update_key(mykey, x = data.frame(x = c("dog", "cat"), y = c(1, -1)))
## Add terms & drop to/from a key
update_key(mykey, drop = c("f", "h"), x = data.frame(x = c("dog", "cat"), y = c(1, -1)))
## Checking if you have a key
is_key(mykey)
is_key(key)
is_key(mtcars)
is_key(update_key(mykey, drop = c("f", "h")))
## Using syuzhet's sentiment lexicons
## Not run:
# library(syuzhet)
# as_key(syuzhet:::bing)
# as_key(syuzhet:::afinn)
# nrc <- data.frame(
# words = rownames(syuzhet:::nrc),
# polarity = syuzhet:::nrc[, "positive"] - syuzhet:::nrc[, "negative"],
# stringsAsFactors = FALSE
# )
#
# as_key(nrc[nrc[["polarity"]] != 0, ])
#
# sentiment(gsub("Sam-I-am", "Sam I am", sam_i_am), as_key(syuzhet:::bing))
# ## End(Not run)
## Using 2 vectors of words
## Not run:
# install.packages("tm.lexicon.GeneralInquirer", repos="http://datacube.wu.ac.at", type="source")
# require("tm.lexicon.GeneralInquirer")
#
# positive <- terms_in_General_Inquirer_categories("Positiv")
# negative <- terms_in_General_Inquirer_categories("Negativ")
#
# geninq <- data.frame(
# x = c(positive, negative),
# y = c(rep(1, length(positive)), rep(-1, length(negative))),
# stringsAsFactors = FALSE
# ) %>%
# as_key()
#
# geninq_pol <- with(presidential_debates_2012,
# sentiment_by(dialogue,
# person,
# polarity_dt = geninq
# ))
#
# geninq_pol %>% plot()
# ## End(Not run)
Run the code above in your browser using DataLab