Learn R Programming

sequenza (version 2.1.1)

cp.plot: Plot log-posterior probability for the tested values of cellularity and ploidy

Description

This function uses the colorgram function from the package squash to plot log-posterior probability for the tested combinations of cellularity and ploidy

Usage

cp.plot(cp.table, xlab = "Ploidy", ylab = "Cellularity",
           zlab = "Scaled rank LPP", 
           colFn = colorRampPalette(c('white', 'lightblue')), ...)
   cp.plot.contours(cp.table, likThresh = c(0.95), alternative = TRUE,
                    col = palette(), legend.pos = "bottomright", pch = 18,
                    alt.pch = 3, ...)

Arguments

cp.table
list, as output from baf.model.fit or mufreq.model.fit.
xlab
xlab parameter as in the function colorgram.
ylab
ylab parameter as in the function colorgram.
zlab
zlab parameter as in the function colorgram.
colFn
colFn parameter as in the function colorgram.
likThresh
vector of quantiles to define tresholds for the confindent regions.
alternative
boolean parameter, if TRUE the alternative solutions are computed and plotted.
col
vector of colors.
legend.pos
position for placing the legend.
pch
character used to indicate the point estimate.
alt.pch
if alternative is set to TRUE defines the character to indicate alternative solutions.
...
additional arguments accepted by the function colorgram for cp.plot, or contour for cp.plot.contours.

Examples

Run this code
data(CP.example)
cp.plot(CP.example)
cp.plot.contours(CP.example, add = TRUE)

cp.plot(CP.example)
cp.plot.contours(CP.example, likThresh = c(0.95, 0.9999), add = TRUE)

Run the code above in your browser using DataLab