# Compare with default error pattern (SNP chip based) :
Err_RADseq(E0=0.001, E1=0.05)
ErrToM(0.05*(1-0.05)*2, Return='vector')
# usage in sequoia() and other functions:
Err_low <- Err_RADseq(E0=0.002, E1=0.05)
Err_high <- Err_RADseq(E0=0.01, E1=0.15)
if (FALSE) {
SeqOUT_lowErr <- sequoia(GenoM, LHdata, Err=Err_low)
SeqOUT_highErr <- sequoia(GenoM, LHdata, Err=Err_high)
# also usable for confidence estimates, and to explore potential consequences
# of the actual genotyping error rate being much higher/lower than assumed
EC <- EstConf(best_pedigree, LHdata, args.sim=list(SnpError=Err_high),
args.seq=list(Err=Err_low))
}
Run the code above in your browser using DataLab