powered by
Calculate a binomial series lower confidence bound using Bayes' method with a Beta prior distribution.
bayes(s, n, alpha, MonteCarlo, beta.a, beta.b, ...)
Vector of successes.
Vector of sample sizes.
The significance level; to calculate a 100(1-\(\alpha\))% lower confidence bound.
Number of samples to draw from the posterior distribution for the Monte Carlo estimate.
Shape1 parameter for the Beta prior distribution.
Shape2 parameter for the Beta prior distribution.
Additional arguments to be ignored.
The 100(1-\(\alpha\))% lower confidence bound.
# NOT RUN { bayes(s=c(35, 97, 59), n=c(35, 100, 60), alpha=.10, MonteCarlo=1000, beta.a=1, beta.b=1) # }
Run the code above in your browser using DataLab