This function models seroincidence using maximum likelihood estimation; that is, it finds the value of the seroincidence parameter which maximizes the likelihood (i.e., joint probability) of the data.
est.incidence(
pop_data,
curve_params,
noise_params,
antigen_isos = pop_data$antigen_iso %>% unique(),
lambda_start = 0.1,
stepmin = 1e-08,
stepmax = 3,
verbose = FALSE,
build_graph = FALSE,
print_graph = build_graph & verbose,
...
)
a "seroincidence"
object, which is a stats::nlm()
fit object with extra meta-data attributes lambda_start
, antigen_isos
, and ll_graph
a data.frame with cross-sectional serology data per antibody and age, and additional columns
a data.frame()
containing MCMC samples of parameters
from the Bayesian posterior distribution of a longitudinal decay curve model.
The parameter columns must be named:
antigen_iso
: a character()
vector indicating antigen-isotype
combinations
iter
: an integer()
vector indicating MCMC sampling iterations
y0
: baseline antibody level at $t=0$ ($y(t=0)$)
y1
: antibody peak level (ELISA units)
t1
: duration of infection
alpha
: antibody decay rate
(1/days for the current longitudinal parameter sets)
r
: shape factor of antibody decay
a data.frame()
(or tibble::tibble()
)
containing the following variables,
specifying noise parameters for each antigen isotype:
antigen_iso
: antigen isotype whose noise parameters are being specified
on each row
nu
: biological noise
eps
: measurement noise
y.low
: lower limit of detection for the current antigen isotype
y.high
: upper limit of detection for the current antigen isotype
Character vector with one or more antibody names. Values must match pop_data
starting guess for incidence rate, in years/event.
A positive scalar providing the minimum allowable relative step length.
a positive scalar which gives the maximum allowable
scaled step length. stepmax
is used to prevent steps which
would cause the optimization function to overflow, to prevent the
algorithm from leaving the area of interest in parameter space, or to
detect divergence in the algorithm. stepmax
would be chosen
small enough to prevent the first two of these occurrences, but should
be larger than any anticipated reasonable step.
logical: if TRUE, print verbose log information to console
whether to graph the log-likelihood function across a range of incidence rates (lambda values)
whether to display the log-likelihood curve graph in the course of running est.incidence()
Arguments passed on to stats::nlm
typsize
an estimate of the size of each parameter at the minimum.
fscale
an estimate of the size of f
at the minimum.
ndigit
the number of significant digits in the function f
.
gradtol
a positive scalar giving the tolerance at which the
scaled gradient is considered close enough to zero to
terminate the algorithm. The scaled gradient is a
measure of the relative change in f
in each direction
p[i]
divided by the relative change in p[i]
.
iterlim
a positive integer specifying the maximum number of iterations to be performed before the program is terminated.
check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians, if they are supplied, should be checked against numerical derivatives at the initial parameter values. This can help detect incorrectly formulated gradients or Hessians.
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est1 <- est.incidence(
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
)
summary(est1)
Run the code above in your browser using DataLab