library(dplyr)
library(tibble)
# Load cross-sectional data
xs_data <-
sees_pop_data_pk_100
# Load curve parameters and subset for the purposes of this example
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# Load noise parameters
cond <- tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # Low cutoff (llod)
y.high = c(5e6, 5e6)) # High cutoff (y.high)
# Graph the log likelihood
lik_HlyE_IgA <- # nolint: object_name_linter
graph_loglik(
pop_data = xs_data,
curve_params = curve,
noise_params = cond,
antigen_isos = "HlyE_IgA",
log_x = TRUE
)
lik_HlyE_IgA # nolint: object_name_linter
Run the code above in your browser using DataLab