Learn R Programming

serosv (version 1.1.0)

mixture_model: Fit a mixture model to classify serostatus

Description

Refers to section 11.1 - 11.4

Usage

mixture_model(
  antibody_level,
  breaks = 40,
  pi = c(0.2, 0.8),
  mu = c(2, 6),
  sigma = c(0.5, 1)
)

Value

a list of class mixture_model with the following items

df

the dataframe used for fitting the model

info

list of 3 items parameters, distribution and constraints for the fitted model

susceptible

fitted distribution for susceptible

infected

fitted distribution for infected

Arguments

antibody_level

- vector of the corresponding raw antibody level

breaks

- number of intervals which the antibody_level are grouped into

pi

- proportion of susceptible, infected

mu

- a vector of means of component distributions (vector of 2 numbers in ascending order)

sigma

- a vector of standard deviations of component distributions (vector of 2 number)

Examples

Run this code
df <- vzv_be_2001_2003[vzv_be_2001_2003$age < 40.5,]
data <- df$VZVmIUml[order(df$age)]
model <- mixture_model(antibody_level = data)
model$info
plot(model)

Run the code above in your browser using DataLab