
Similarities and dissimilarities for (generalized) sets.
set_similarity(x, y, method = "Jaccard")
gset_similarity(x, y, method = "Jaccard")
cset_similarity(x, y, method = "Jaccard")set_dissimilarity(x, y,
method = c("Jaccard", "Manhattan", "Euclidean",
"L1", "L2"))
gset_dissimilarity(x, y,
method = c("Jaccard", "Manhattan", "Euclidean",
"L1", "L2"))
cset_dissimilarity(x, y,
method = c("Jaccard", "Manhattan", "Euclidean",
"L1", "L2"))
A numeric value (similarity or dissimilarity, as specified).
Two (generalized/customizable) sets.
Character string specifying the proximity method (see below).
For two generalized sets Jaccard
similarity is Jaccard
dissimilarity is 1 minus the similarity.
The L1
(or Manhattan
) and L2
(or
Euclidean
)
dissimilarities are defined as
follows. For two fuzzy multisets
set
.
A <- set("a", "b", "c")
B <- set("c", "d", "e")
set_similarity(A, B)
set_dissimilarity(A, B)
A <- gset(c("a", "b", "c"), c(0.3, 0.7, 0.9))
B <- gset(c("c", "d", "e"), c(0.2, 0.4, 0.5))
gset_similarity(A, B, "Jaccard")
gset_dissimilarity(A, B, "Jaccard")
gset_dissimilarity(A, B, "L1")
gset_dissimilarity(A, B, "L2")
A <- gset(c("a", "b", "c"), list(c(0.3, 0.7), 0.1, 0.9))
B <- gset(c("c", "d", "e"), list(0.2, c(0.4, 0.5), 0.8))
gset_similarity(A, B, "Jaccard")
gset_dissimilarity(A, B, "Jaccard")
gset_dissimilarity(A, B, "L1")
gset_dissimilarity(A, B, "L2")
Run the code above in your browser using DataLab