Learn R Programming

sf (version 0.4-2)

dplyr: Dplyr verb methods for sf objects

Description

Dplyr verb methods for sf objects

Usage

filter_.sf(.data, ..., .dots)

filter.sf(.data, ...)

arrange_.sf(.data, ..., .dots)

arrange.sf(.data, ...)

distinct_.sf(.data, ..., .dots, .keep_all = FALSE)

distinct.sf(.data, ..., .dots, .keep_all = FALSE)

group_by_.sf(.data, ..., .dots, add = FALSE)

group_by.sf(.data, ..., .dots, add = FALSE)

mutate_.sf(.data, ..., .dots)

mutate.sf(.data, ..., .dots)

transmute_.sf(.data, ..., .dots)

transmute.sf(.data, ..., .dots)

select_.sf(.data, ..., .dots = NULL)

select.sf(.data, ...)

rename_.sf(.data, ..., .dots)

rename.sf(.data, ...)

slice_.sf(.data, ..., .dots)

slice.sf(.data, ...)

summarise.sf(.data, ..., .dots, do_union = TRUE)

summarise_.sf(.data, ..., .dots, do_union = TRUE)

gather_.sf(data, key_col, value_col, gather_cols, na.rm = FALSE, convert = FALSE, factor_key = FALSE)

spread_.sf(data, key_col, value_col, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)

sample_n.sf(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame())

sample_frac.sf(tbl, size = 1, replace = FALSE, weight = NULL, .env = parent.frame())

nest_.sf(data, key_col, nest_cols)

inner_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

left_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

right_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

full_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

semi_join.sf(x, y, by = NULL, copy = FALSE, ...)

anti_join.sf(x, y, by = NULL, copy = FALSE, ...)

Arguments

.data
data object of class sf
...
other arguments
.dots
see corresponding function in package dplyr
.keep_all
see corresponding function in dplyr
add
see corresponding function in dplyr
do_union
logical; should geometries be unioned, using st_union, or simply be combined using st_combine?
data
see original function docs
key_col
see original function docs
value_col
see original function docs
gather_cols
see original function docs
na.rm
see original function docs
convert
see original function docs
factor_key
see original function docs
fill
see original function docs
drop
see original function docs
sep
see original function docs
tbl
see original function docs
size
see original function docs
replace
see original function docs
weight
see original function docs
.env
see original function docs
nest_cols
see nest
by
copy
suffix

Examples

Run this code
library(dplyr)
nc = st_read(system.file("shape/nc.shp", package="sf"))
nc %>% filter(AREA > .1) %>% plot()
# plot 10 smallest counties in grey:
st_geometry(nc) %>% plot()
nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area")
nc[c(1:100, 1:10), ] %>% distinct() %>% nrow()
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc %>% group_by(area_cl) %>% class()
nc2 <- nc %>% mutate(area10 = AREA/10)
nc %>% transmute(AREA = AREA/10, geometry = geometry) %>% class()
nc %>% transmute(AREA = AREA/10) %>% class()
nc %>% select(SID74, SID79) %>% names()
nc %>% select(SID74, SID79, geometry) %>% names()
nc %>% select(SID74, SID79) %>% class()
nc %>% select(SID74, SID79, geometry) %>% class()
nc2 <- nc %>% rename(area = AREA)
nc %>% slice(1:2)
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc.g <- nc %>% group_by(area_cl)
nc.g %>% summarise(mean(AREA))
nc.g %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))
nc %>% as.data.frame %>% summarise(mean(AREA))
library(tidyr)
nc %>% select(SID74, SID79, geometry) %>% gather(VAR, SID, -geometry) %>% summary()
library(tidyr)
nc$row = 1:100 # needed for spread to work
nc %>% select(SID74, SID79, geometry, row) %>% 
     gather(VAR, SID, -geometry, -row) %>% 
	spread(VAR, SID) %>% head()

Run the code above in your browser using DataLab