powered by
Check if the input cross-validation parameters are allowed and set them to default values if they are not. Returns a list of well-defined cross-validation parameters.
set.control.cv( criterion = c("dev", "mae", "mse", "aic", "bic"), refit = TRUE, nfolds = 5, proportion = 0.3, init = c("common", "separate"), verbose = FALSE, parallel = FALSE, nthreads = 1 )
A list of control parameters for the cross-validation algorithm
list
information criterion to minimize for selecting the matrix rank
if TRUE, refit the model with the selected rank and return the fitted model
TRUE
number of cross-validation folds
proportion of the data to be used as test set in each fold
initialization approach to use
if TRUE, print the cross-validation status
if TRUE, allows for parallel computing
number of cores to use in parallel (only if parallel=TRUE)
parallel=TRUE
set.control.init, set.control.alg, sgdgmf.cv
set.control.init
set.control.alg
sgdgmf.cv
library(sgdGMF) # Empty call set.control.cv() # Parametrized call set.control.cv(criterion = "bic", proportion = 0.2)
Run the code above in your browser using DataLab