Learn R Programming

sglOptim (version 1.0.122.0)

sgl_cv: Generic sparse group lasso cross validation using multiple possessors

Description

Generic sparse group lasso cross validation using multiple possessors

Usage

sgl_cv(module_name, PACKAGE, data, parameterGrouping,
    groupWeights, parameterWeights, alpha, lambda,
    fold = 2, cv.indices = list(), max.threads = 2,
    algorithm.config = sgl.standard.config)

Arguments

module_name
reference to objective specific C++ routines.
PACKAGE
name of the calling package.
data
a list of data objects -- will be parsed to the specified module.
parameterGrouping
grouping of parameters, a vector of length $p$. Each element of the vector specifying the group of the parameters in the corresponding column of $\beta$.
groupWeights
the group weights, a vector of length length(unique(parameterGrouping)) (the number of groups).
parameterWeights
a matrix of size $q \times p$.
alpha
the $\alpha$ value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
lambda
the lambda sequence for the regularization path.
fold
the fold of the cross validation, an integer larger than $1$ and less than $N+1$. Ignored if cv.indices != NULL. If fold$\le$max(table(classes)) then the data will be split into fold disjoint sub
cv.indices
a list of indices of a cross validation splitting. If cv.indices = NULL then a random splitting will be generated using the fold argument.
max.threads
the maximal number of threads to be used.
algorithm.config
the algorithm configuration to be used.

Value

  • responsescontent will depend on the C++ response class
  • cv.indicesthe cross validation splitting used
  • featuresnumber of features used in the models
  • parametersnumber of parameters used in the models
  • lambdathe lambda sequence used.