Usage
sgl_fit(module_name, PACKAGE, data, parameterGrouping,
groupWeights, parameterWeights, alpha, lambda,
return = 1:length(lambda),
algorithm.config = sgl.standard.config)
Arguments
module_name
reference to objective specific C++
routines.
PACKAGE
name of the calling package.
data
a list of data objects -- will be parsed to
the specified module.
parameterGrouping
grouping of parameters, a vector
of length $p$. Each element of the vector specifying
the group of the parameters in the corresponding column
of $\beta$.
groupWeights
the group weights, a vector of length
length(unique(parameterGrouping))
(the number of
groups).
parameterWeights
a matrix of size $q \times
p$.
alpha
the $\alpha$ value 0 for group lasso, 1
for lasso, between 0 and 1 gives a sparse group lasso
penalty.
lambda
the lambda sequence for the regularization
path.
return
the indices of lambda values for which to
return fitted parameters.
algorithm.config
the algorithm configuration to be
used.