require(survival)
rows <- 200
columns <- 2
t_beta <- c(0.5, 2)
t_sigma <- 1
set.seed(8142031)
x1 <- rbinom(rows, 1, 0.5)
x2 <- runif(rows, 0, 1)
X <- cbind(x1,x2)
s <- t_sigma^2
a <- 1/s
t_ini1 <- exp(X %*% t_beta) * rweibull(rows, scale = s, shape = a)
cens.time <- rweibull(rows, 0.75, 20)
delta1 <- ifelse(t_ini1 > cens.time, 1, 0)
obst1 <- t_ini1
obst1[delta1==1] <- cens.time[delta1==1]
data.example <- data.frame(obst1,delta1,X)
fit3 <- survglg(Surv(log(obst1),delta1) ~ x1 + x2 - 1, data=data.example, shape = 1)
fit3$condition
fit3$scores
summary(fit3)
# We can obtain the logLik (in the exp scale) from
fit3$llgg
delta2 = 1 - delta1
fit4 <- survreg(Surv(obst1,delta2) ~ x1 + x2 - 1, data=data.example, dist = 'weibull')
summary(fit4)
Run the code above in your browser using DataLab