Learn R Programming

sgof (version 2.0.2)

BH: Benjamini-Hochberg (BH) multi-testing procedure

Description

Performs the Benjamini-Hochberg FDR-controlling method for multiple hypothesis testing.

Usage

BH(u, alpha = 0.05)

Arguments

u
A (non-empty) numeric vector of p-values.
alpha
Numeric value. The significance level of the test.

Value

  • A list containing the following values:
  • RejectionsThe number of effects declared by the BH procedure.
  • FDRThe estimated false discovery rate.
  • Adjusted.pvaluesThe adjusted p-values.
  • dataThe original p-values.
  • alphaThe specified significance level for the test.
  • callThe matched call.

encoding

UTF-8

Details

The function BH allows for the application of the Benjamini and Hochberg (1995) false discovery rate controlling procedure. The false discovery rate is estimated by the simple method proposed by: Dalmasso, Broet, Moreau (2005), by taking n=1 in their formula.

References

Benjamini Y and Hochberg Y (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57, 289--300. Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery rate. Bioinformatics 21:660--668

See Also

plot.BH,summary.BH

Examples

Run this code
res<-BH(Hedenfalk$x)
summary(res)   #number of rejected nulls, estimated FDR
plot(res)   #adjusted p-values

Run the code above in your browser using DataLab