Learn R Programming

sgof (version 2.3.5)

BH: Benjamini-Hochberg (BH) multiple testing procedure

Description

Performs the Benjamini-Hochberg FDR-controlling method for multiple hypothesis testing.

Usage

BH(u, alpha = 0.05)

Value

A list containing the following values:

Rejections

The number of effects declared by the BH procedure.

FDR

The estimated false discovery rate.

Adjusted.pvalues

The adjusted p-values.

data

The original p-values.

alpha

The specified significance level for the test.

call

The matched call.

Arguments

u

A (non-empty) numeric vector of p-values.

alpha

Numeric value. The significance level of the test.

Author

Irene Castro Conde and Jacobo de Uña Álvarez

Details

The function BH allows for the application of the Benjamini and Hochberg (1995) false discovery rate controlling procedure. The false discovery rate is estimated by the simple method proposed by: Dalmasso, Broet, Moreau (2005), by taking n=1 in their formula.

References

Benjamini Y and Hochberg Y (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57, 289--300.

Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery rate. Bioinformatics 21:660--668

See Also

plot.BH,summary.BH

Examples

Run this code



res<-BH(Hedenfalk$x)
summary(res)   #number of rejected nulls, estimated FDR
plot(res)   #adjusted p-values

Run the code above in your browser using DataLab