require(DiscreteDatasets)
data(amnesia) #discrete data
AllAdverseCases<-amnesia$OtherAdverseCases + amnesia$AmnesiaCases
A11 <- amnesia$AmnesiaCases
A21 <- sum(AllAdverseCases) - A11
A12 <- AllAdverseCases - A11
A22 <- sum(AllAdverseCases) - sum(amnesia$AmnesiaCases) - A12
A1. <- sum(amnesia$AmnesiaCases)
A2. <- sum(AllAdverseCases) - A1.
n <- A11 + A12
k <- pmin(n,A1.)
pCDFlist <- list()
pvec <- numeric(nrow(amnesia))
## Calculation of the p-values and the p-values CDFs:
for (i in 1:nrow(amnesia))
{
x <- 0:k[i]
pCDFlist[[i]] <- dhyper(x ,A1., A2. ,n[i]) + phyper(x ,A1. ,A2. ,n[i] ,lower.tail = FALSE)
pCDFlist[[i]] <- rev(pCDFlist[[i]])
pvec[i] <- dhyper(A11[i] ,A1. ,A2. ,n[i]) + phyper(A11[i] ,A1. ,A2. ,n[i] ,lower.tail = FALSE)
}
res<-Discrete.SGoF(u=pvec,pCDFlist=pCDFlist,alpha=0.05,gamma=0.05,Discrete=TRUE,Sides=1)
res
#continuous p-values
res2<-Discrete.SGoF(u=Hedenfalk$x,K=3170,Discrete=FALSE, method="DFT-CF",Sides=2)
res2
Run the code above in your browser using DataLab