Learn R Programming

sgof (version 2.3.5)

summary.BBSGoF: Summary of a BBSGoF object

Description

Summary of the most important results given by the BBSGoF procedure.

Usage

# S3 method for BBSGoF
summary(object,...)

Value

Rejections

The number of effects declared by BB-SGoF with automatic k.

FDR

The estimated false discovery rate.

Adjusted.pvalues

Table of adjusted p-values falling under gamma.

Tarone.pvalue.auto

The p-values of Tarone’s test for the automatic k.

beta.parameters

The estimated parameters of the Beta(a,b) model for the automatic k.

betabinomial.parameters

The estimated parameters of the Betabinomial(p,ro) model for the automatic k.

sd.betabinomial.parameters

The standard deviation of the estimated parameters of the Betabinomial(p,ro) model for the automatic k.

automatic.blocks

The automatic number of blocks.

Arguments

object

A BBSGoF object.

...

Additional arguments affecting the summary produced.

Author

Irene Castro Conde and Jacobo de Uña Álvarez

References

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery rate. Bioinformatics 21:660--668

de Uña Álvarez J (2012). The Beta-Binomial SGoF method for multiple dependent tests. Statistical Applications in Genetics and Molecular Biology, Vol. 11, Iss. 3, Article 14.

See Also

BBSGoF,plot.BBSGoF

Examples

Run this code

p<-runif(387)^2  #387 p-values, intersection null violated

res<-BBSGoF(p)
summary(res)    #automatic number of blocks, number of rejected nulls, 
		#estimated FDR, beta and beta-binomial parameters,
		#Tarone test of no correlation 


Run the code above in your browser using DataLab