# NOT RUN {
# false discovery risk with 95% confidence level
fdrisk(sgpval = 0, null.lo = log(1/1.1), null.hi = log(1.1), std.err = 0.8,
null.weights = 'Uniform', null.space = c(log(1/1.1), log(1.1)),
alt.weights = 'Uniform', alt.space = 2 + c(-1,1)*qnorm(1-0.05/2)*0.8,
interval.type = 'confidence', interval.level = 0.05)
# false discovery risk with 1/8 likelihood support level
fdrisk(sgpval = 0, null.lo = log(1/1.1), null.hi = log(1.1), std.err = 0.8,
null.weights = 'Point', null.space = 0, alt.weights = 'Uniform',
alt.space = 2 + c(-1,1)*qnorm(1-0.041/2)*0.8,
interval.type = 'likelihood', interval.level = 1/8)
## with truncated normal weighting distribution
fdrisk(sgpval = 0, null.lo = log(1/1.1), null.hi = log(1.1), std.err = 0.8,
null.weights = 'Point', null.space = 0, alt.weights = 'TruncNormal',
alt.space = 2 + c(-1,1)*qnorm(1-0.041/2)*0.8,
interval.type = 'likelihood', interval.level = 1/8)
# false discovery risk with LSI and wider null hypothesis
fdrisk(sgpval = 0, null.lo = log(1/1.5), null.hi = log(1.5), std.err = 0.8,
null.weights = 'Point', null.space = 0, alt.weights = 'Uniform',
alt.space = 2.5 + c(-1,1)*qnorm(1-0.041/2)*0.8,
interval.type = 'likelihood', interval.level = 1/8)
# false confirmation risk example
fdrisk(sgpval = 1, null.lo = log(1/1.5), null.hi = log(1.5), std.err = 0.15,
null.weights = 'Uniform', null.space = 0.01 + c(-1,1)*qnorm(1-0.041/2)*0.15,
alt.weights = 'Uniform', alt.space = c(log(1.5), 1.25*log(1.5)),
interval.type = 'likelihood', interval.level = 1/8)
# }
Run the code above in your browser using DataLab