Learn R Programming

sgr (version 1.3.1)

amse: Average root mean square error

Description

Average root mean square error (AMSE).

Usage

amse(Bpar, B0)

Arguments

Bpar

Matrix with dimension \(B\) (replicates) \(\times P\) (parameters).

B0

Vector of true parameter values.

Value

Gives the AMSE value.

Details

Let \(\hat{\theta}_{ij}\) be the estimated parameter value for the \(j\)th parameter in the \(i\)th sample (replicate), \(i = 1, 2, \ldots B\), \(j = 1, 2, \ldots P\), and let \(\theta_{j}\) be the corresponding true parameter value, the Average root mean square error is defined as follows:

$$AMSE=\frac{1}{B}\sum_{i}\sqrt{\frac{1}{P} \sum_{j} \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right]^2}$$

References

Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.

See Also

arb