Average root mean square error (AMSE).
amse(Bpar, B0)
Matrix with dimension \(B\) (replicates) \(\times P\) (parameters).
Vector of true parameter values.
Gives the AMSE value.
Let \(\hat{\theta}_{ij}\) be the estimated parameter value for the \(j\)th parameter in the \(i\)th sample (replicate), \(i = 1, 2, \ldots B\), \(j = 1, 2, \ldots P\), and let \(\theta_{j}\) be the corresponding true parameter value, the Average root mean square error is defined as follows:
$$AMSE=\frac{1}{B}\sum_{i}\sqrt{\frac{1}{P} \sum_{j} \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right]^2}$$
Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.