Population matrices and descriptions of metric raster data
Calculates population level statistics including principal components, quantile matrix, and covariance matrix
needed necessary for calculate_lhsOpt. Outputs can also be used as an input for sample_ahels.
List of matrices to be used as input for calculate_lhsOpt.
Arguments
mraster
spatRaster. ALS metrics raster.
PCA
Logical. Calculates principal component loadings of the population for PCA similarity factor testing.
default = FALSE.
matQ
Logical. Calculates quantile matrix of the population for quantile comparison testing.
default = TRUE.
nQuant
Numeric. Number of quantiles to divide the population into for matQ.
default = 10.
matCov
Logical. Calculates covariate matrix of the population. Needed for Kullback–Leibler divergence testing.
default = TRUE. Requires matQ = TRUE.
Author
Tristan R.H. Goodbody
References
Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451
See Also
Other calculate functions:
calculate_allocation(),
calculate_allocation_existing(),
calculate_coobs(),
calculate_distance(),
calculate_pcomp(),
calculate_representation(),
calculate_sampsize()