The functions se_nh, re_nh, hce_nh, and ae_nh provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponential extension distribution and \(\delta\).
Arguments
alpha
The strictly positive parameter of the exponential extension distribution (\(\alpha > 0\)).
beta
The strictly positive parameter of the exponential extension distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the exponential extension distribution:
$$
f(x)=\alpha\beta(1+\alpha x)^{\beta-1}e^{1-(1+\alpha x)^{\beta}},
$$
where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).
References
Nadarajah, S., & Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6), 543-558.