Learn R Programming

shannon (version 0.2.0)

Exponentiated exponential distribution: Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated exponential distribution

Description

Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated exponential distribution.

Usage

se_ee(alpha, beta)
re_ee(alpha, beta, delta)
hce_ee(alpha, beta, delta)
ae_ee(alpha, beta, delta)

Value

The functions se_ee, re_ee, hce_ee, and ae_ee provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponentiated exponential distribution and \(\delta\).

Arguments

alpha

The strictly positive scale parameter of the exponentiated exponential distribution (\(\alpha > 0\)).

beta

The strictly positive shape parameter of the exponentiated exponential distribution (\(\beta > 0\)).

delta

The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

Details

The following is the probability density function of the exponentiated exponential distribution: $$ f(x)=\alpha\beta e^{-\alpha x}\left(1-e^{-\alpha x}\right)^{\beta-1}, $$ where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).

References

Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.

Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference, 137(11), 3537-3547.

See Also

re_exp, re_wei, re_nh

Examples

Run this code
se_ee(0.2, 1.4)
delta <- c(1.5, 2, 3)
re_ee(0.2, 1.4, delta)
hce_ee(0.2, 1.4, delta)
ae_ee(0.2, 1.4, delta)

Run the code above in your browser using DataLab