Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated exponential distribution.
se_ee(alpha, beta)
re_ee(alpha, beta, delta)
hce_ee(alpha, beta, delta)
ae_ee(alpha, beta, delta)
The functions se_ee, re_ee, hce_ee, and ae_ee provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponentiated exponential distribution and \(\delta\).
The strictly positive scale parameter of the exponentiated exponential distribution (\(\alpha > 0\)).
The strictly positive shape parameter of the exponentiated exponential distribution (\(\beta > 0\)).
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
The following is the probability density function of the exponentiated exponential distribution: $$ f(x)=\alpha\beta e^{-\alpha x}\left(1-e^{-\alpha x}\right)^{\beta-1}, $$ where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.
Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference, 137(11), 3537-3547.
re_exp, re_wei, re_nh
se_ee(0.2, 1.4)
delta <- c(1.5, 2, 3)
re_ee(0.2, 1.4, delta)
hce_ee(0.2, 1.4, delta)
ae_ee(0.2, 1.4, delta)
Run the code above in your browser using DataLab