The functions Se_gamma, re_gamma, hce_gamma, and ae_gamma provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the gamma distribution and \(\delta\).
Arguments
alpha
The strictly positive shape parameter of the gamma distribution (\(\alpha > 0\)).
beta
The strictly positive scale parameter of the gamma distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the gamma distribution:
$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x},
$$
where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\), and \(\Gamma(a)\) is the standard gamma function.
References
Burgin, T. A. (1975). The gamma distribution and inventory control. Journal of the Operational Research Society, 26(3), 507-525.