The functions se_kum, re_kum, hce_kum, and ae_kum provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy distribution and \(\delta\).
Arguments
alpha
The strictly positive shape parameter of the Kumaraswamy distribution (\(\alpha > 0\)).
beta
The strictly positive shape parameter of the Kumaraswamy distribution (\(\beta > 0\)).
delta
The strictly positive scale parameter (\(\delta > 0\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Kumaraswamy distribution:
$$
f(x)=\alpha\beta x^{\alpha-1}\left(1-x^{\alpha}\right)^{\beta-1},
$$
where \(0\leq x\leq1\), \(\alpha > 0\) and \(\beta > 0\).
References
El-Sherpieny, E. S. A., & Ahmed, M. A. (2014). On the Kumaraswamy distribution. International Journal of Basic and Applied Sciences, 3(4), 372.
Al-Babtain, A. A., Elbatal, I., Chesneau, C., & Elgarhy, M. (2021). Estimation of different types of entropies for the Kumaraswamy distribution. PLoS One, 16(3), e0249027.