Learn R Programming

shannon (version 0.2.0)

Kumaraswamy distribution: Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy distribution

Description

Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy distribution.

Usage

se_kum(alpha, beta)
re_kum(alpha, beta, delta)
hce_kum(alpha, beta, delta)
ae_kum(alpha, beta, delta)

Value

The functions se_kum, re_kum, hce_kum, and ae_kum provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy distribution and \(\delta\).

Arguments

alpha

The strictly positive shape parameter of the Kumaraswamy distribution (\(\alpha > 0\)).

beta

The strictly positive shape parameter of the Kumaraswamy distribution (\(\beta > 0\)).

delta

The strictly positive scale parameter (\(\delta > 0\)).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

Details

The following is the probability density function of the Kumaraswamy distribution: $$ f(x)=\alpha\beta x^{\alpha-1}\left(1-x^{\alpha}\right)^{\beta-1}, $$ where \(0\leq x\leq1\), \(\alpha > 0\) and \(\beta > 0\).

References

El-Sherpieny, E. S. A., & Ahmed, M. A. (2014). On the Kumaraswamy distribution. International Journal of Basic and Applied Sciences, 3(4), 372.

Al-Babtain, A. A., Elbatal, I., Chesneau, C., & Elgarhy, M. (2021). Estimation of different types of entropies for the Kumaraswamy distribution. PLoS One, 16(3), e0249027.

See Also

re_beta

Examples

Run this code
se_kum(1.2, 1.4)
delta <- c(1.5, 2, 3)
re_kum(1.2, 1.4, delta)
hce_kum(1.2, 1.4, delta)
ae_kum(1.2, 1.4, delta)

Run the code above in your browser using DataLab