Learn R Programming

shapes (version 1.2.5)

shapes.cva: Canonical variate analysis for shapes

Description

Carry out canonical variate analysis for shapes (in two or more groups)

Usage

shapes.cva(X,groups,scale=TRUE,ncv=2)

Arguments

X

Input k x m x n real array of the configurations, where k is the number of points, m is the number of dimensions, and n is the sample size.

groups

The group labels

scale

Logical, indicating if Procrustes scaling should be carried out

ncv

Number of canonical variates to display

Value

A plot if ncv=2 or 3 and the Canonical Variate Scores

References

Dryden, I.L. and Mardia, K.V. (2016). Statistical Shape Analysis, with Applications in R (Second Edition). Wiley, Chichester.

See Also

procGPA

Examples

Run this code
# NOT RUN {
#2D example : female and male apes   (cf. Dryden and Mardia, 2016)

data(pongof.dat)
data(pongom.dat) 
data(panm.dat)
data(panf.dat)

apes   <- groupstack( pongof.dat , pongom.dat , panm.dat, panf.dat )

shapes.cva( apes$x, apes$groups) 
# }

Run the code above in your browser using DataLab