Fit point process to randomize data
fit_point_process(
pattern,
n_random = 1,
process = "poisson",
return_para = FALSE,
return_input = TRUE,
simplify = FALSE,
verbose = TRUE
)rd_pat
ppp object with point pattern
Integer with number of randomizations.
Character specifying which point process model to use.
Either "poisson" or "cluster".
Logical if fitted parameters should be returned.
Logical if the original input data is returned.
Logical if only pattern will be returned if n_random = 1
and return_input = FALSE.
Logical if progress report is printed.
The functions randomizes the observed point pattern by fitting a point process to
the data and simulating n_random patterns using the fitted point process.
It is possible to choose between a Poisson process or a Thomas cluster process model.
For more information about the point process models, see e.g. Wiegand & Moloney (2014).
Plotkin, J.B., Potts, M.D., Leslie, N., Manokaran, N., LaFrankie, J.V., Ashton, P.S., 2000. Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology 207, 81–99. <https://doi.org/10.1006/jtbi.2000.2158>
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton. ISBN 978-1-4200-8254-8
pattern_fitted <- fit_point_process(pattern = species_a, n_random = 39)
Run the code above in your browser using DataLab