Learn R Programming

sharp (version 1.4.6)

sharp-package: sharp: Stability-enHanced Approaches using Resampling Procedures

Description

In stability selection and consensus clustering, resampling techniques are used to enhance the reliability of the results. In this package, hyper-parameters are calibrated by maximising model stability, which is measured under the null hypothesis that all selection (or co-membership) probabilities are identical. Functions are readily implemented for the use of LASSO regression, sparse PCA, sparse (group) PLS or graphical LASSO in stability selection, and hierarchical clustering, partitioning around medoids, K means or Gaussian mixture models in consensus clustering.

Arguments

Details

Package:sharp
Type:Package
Version:1.4.6
Date:2024-02-03
License:GPL (>= 3)
Maintainer:Barbara Bodinier barbara.bodinier@gmail.com

References

OurConsensusClusteringsharp

ourstabilityselectionsharp

stabilityselectionMBsharp

ConsensusClusteringsharp

Examples

Run this code
# \donttest{
oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))

## Regression models
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50)

# Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)


## Graphical models
# Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")

# Stability selection
stab <- GraphicalModel(xdata = simul$data)
CalibrationPlot(stab)
summary(stab)
plot(stab)


## PCA models
if (requireNamespace("elasticnet", quietly = TRUE)) {
  # Data simulation
  set.seed(1)
  simul <- SimulateComponents(pk = c(5, 3, 4))
  plot(simul)

  # Stability selection
  stab <- BiSelection(
    xdata = simul$data,
    ncomp = 3,
    implementation = SparsePCA
  )
  CalibrationPlot(stab)
  summary(stab)
  SelectedVariables(stab)
}


## PLS models
if (requireNamespace("sgPLS", quietly = TRUE)) {
  # Data simulation
  set.seed(1)
  simul <- SimulateRegression(n = 50, pk = c(10, 20, 30), family = "gaussian")

  # Stability selection
  stab <- BiSelection(
    xdata = simul$xdata, ydata = simul$ydata,
    family = "gaussian", ncomp = 3,
    implementation = SparsePLS
  )
  CalibrationPlot(stab)
  summary(stab)
  plot(stab)
}

par(oldpar)
# }

Run the code above in your browser using DataLab