MSS <- 8
MAC <- 9
time_seq <- seq(0, 6, length.out = 10)
df <- data.frame(
time = time_seq,
distance_at_time = predict_distance_at_time(time_seq, MSS, MAC),
velocity_at_time = predict_velocity_at_time(time_seq, MSS, MAC),
acceleration_at_time = predict_acceleration_at_time(time_seq, MSS, MAC)
)
df$time_at_distance <- predict_time_at_distance(df$distance_at_time, MSS, MAC)
df$velocity_at_distance <- predict_velocity_at_distance(df$distance_at_time, MSS, MAC)
df$acceleration_at_distance <- predict_acceleration_at_distance(df$distance_at_time, MSS, MAC)
df$acceleration_at_velocity <- predict_acceleration_at_velocity(df$velocity_at_time, MSS, MAC)
# Power calculation uses shorts::get_air_resistance function and its defaults
# values to calculate power. Use the ... to setup your own parameters for power
# calculations
df$power_at_time <- predict_power_at_time(
time = df$time, MSS = MSS, MAC = MAC,
# Check shorts::get_air_resistance for available params
bodymass = 100, bodyheight = 1.85
)
df
# Example for predict_kinematics
split_times <- data.frame(
distance = c(5, 10, 20, 30, 35),
time = c(1.20, 1.96, 3.36, 4.71, 5.35)
)
# Simple model
simple_model <- with(
split_times,
model_timing_gates(distance, time)
)
predict_kinematics(simple_model)
Run the code above in your browser using DataLab