groupShape(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'),
dstTarget = 100, conversion = 'm2cm', ...)
## S3 method for class 'data.frame':
groupShape(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'),
dstTarget = 100, conversion = 'm2cm', ...)
## S3 method for class 'default':
groupShape(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'),
dstTarget = 100, conversion = 'm2cm', ...)
X
, Y
or Point.X
, Point.Y
as well as Aim.X
bandwith
of smoothScatter
.mcd
uses robust Mahalanobis distances (see aq.plot
), pca
uses robust principal components analysis (see
getMOA
.getMOA
.pcout
with outlier='pca'
- final sensitivity can be adjusted with option outbound
, a sensible candidate value seems to be around 0.45.ksX
.ksY
.aq.plot
chisq.plot
, including a reference line with intercept 0 and slope 1smoothScatter
together with group center and error ellipses (original and scaled by factor 2) based on a robust estimate for the covariance matrix (fromcovMcd
using the MCD algorithm)qqnorm
,
smoothScatter
,
hist
,
kernel
,
covMcd
,
shapiro.test
,
ks.test
,
mvnorm.etest
,
chisq.plot
,
aq.plot
,
pcout
# coordinates given by a suitable data frame
res <- groupShape(DFsavage, bandW=4, outlier='mcd',
dstTarget=100, conversion='m2mm')
names(res)
res$corXY
res$Outliers
res$multNorm
# coordinates given by a matrix
xy <- matrix(round(rnorm(200, 0, 5), 2), ncol=2)
groupShape(xy, bandW=1.6)
Run the code above in your browser using DataLab