groupSpread(xy, plots = TRUE, CEPlevel = 0.5, CIlevel = 0.95,
CEPtype = 'CorrNormal', bootCI = c('basic', 'bca'),
dstTarget = 100, conversion = 'm2cm')
## S3 method for class 'data.frame':
groupSpread(xy, plots = TRUE, CEPlevel = 0.5, CIlevel = 0.95,
CEPtype = 'CorrNormal', bootCI = c('basic', 'bca'),
dstTarget = 100, conversion = 'm2cm')
## S3 method for class 'default':
groupSpread(xy, plots = TRUE, CEPlevel = 0.5, CIlevel = 0.95,
CEPtype = 'CorrNormal', bootCI = c('basic', 'bca'),
dstTarget = 100, conversion = 'm2cm')
X
, Y
or Point.X
, Point.Y
as well as Aim.X
getCEP
.'none'
(no bootstrap CI), 'norm'
, 'basic'
, 'perc'
, 'bca'
. See
getMOA
.getMOA
.kappa
), its flattening (1 - inverse aspect ratio) as well as the trace and determinant of the covariance matrix.covMcd
using the MCD algorithm.
The number of replicates for the reported bootstrap confidence intervals is at least 1499. If the BCa interval is reported, it is at least the number of points.
In addition to the numerical results listed below, this function produces the following diagrams:
level
\%-confidence ellipse - the latter also based on a robust estimate for the covariance matrixgetDistToCtr
,
getMaxPairDist
,
getBoundingBox
,
getMinBBox
,
getMinCircle
,
getConfEll
,
getCEP
,
getRayParam
,
getMOA
,
hist
,
boot
,
boot.ci
,
kernel
,
covMcd
# coordinates given by a suitable data frame
res <- groupSpread(DFtalon, CEPtype=c('Grubbs', 'Rayleigh'), CEPlevel=0.5,
CIlevel=0.95, bootCI='none', dstTarget=10, conversion='m2mm')
names(res)
res$sdXYrob
res$distToCtr
res$maxPairDist
res$CEP
# coordinates given by a matrix
xy <- matrix(round(rnorm(200, 0, 5), 2), ncol=2)
groupSpread(xy, CEPlevel=0.5, CIlevel=0.95, dstTarget=25, conversion='m2cm')
Run the code above in your browser using DataLab