Learn R Programming

shrinkGPR (version 1.1.1)

Scalable Gaussian Process Regression with Hierarchical Shrinkage Priors

Description

Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) .

Copy Link

Version

Install

install.packages('shrinkGPR')

Monthly Downloads

136

Version

1.1.1

License

GPL (>= 2)

Maintainer

Peter Knaus

Last Published

October 1st, 2025

Functions in shrinkGPR (1.1.1)

eval_pred_dens

Evaluate Predictive Densities
LPDS

Log Predictive Density Score
kernel_functions

Kernel Functions for Gaussian Processes
plot.shrinkGPR

Graphical summary of posterior of theta
plot.shrinkGPR_marg_samples_2D

Plot method for 2D marginal predictions from shrinkGPR
gen_posterior_samples

Generate Posterior Samples
plot.shrinkTPR

Graphical summary of posterior of theta
calc_pred_moments

Calculate Predictive Moments
plot.shrinkGPR_marg_samples_1D

Plot method for 1D marginal predictions
gen_marginal_samples

Generate Marginal Samples of Predictive Distribution
shrinkGPR

Gaussian Process Regression with Shrinkage and Normalizing Flows
predict.shrinkTPR

Generate Predictions
simGPR

Simulate Data for Gaussian Process Regression
predict.shrinkGPR

Generate Predictions
shrinkTPR

Student-t Process Regression with Shrinkage and Normalizing Flows
sylvester

Sylvester Normalizing Flow