data(design_vec)
# Make example shorter - for paper example use T = ncol(fMRI_responses) = 156*10
T = 156*4
design_sm = design_vec[1:T]
identity_perm = 1:T
reverse_perm = rev(identity_perm)
shift_perm = c(2:T, 1)
design_avg = getAveraging(design_sm)
identity_norm = getNormalizer(design_avg, identity_perm)
print('For the identity, we cannot get an estimator')
print(sprintf('facA(1) %.3f, facB(alpha) %.3f, normalizer %.3f ',
identity_norm$facA, identity_norm$facB, identity_norm$norm))
reverse_norm = getNormalizer(design_avg, reverse_perm)
print('For the reverse, we get a normalizer close to 1 ')
print(sprintf('facA(1) %.3f, facB(alpha) %.3f, normalizer %.3f ',
reverse_norm$facA, reverse_norm$facB, reverse_norm$norm))
shift_norm = getNormalizer(design_avg, shift_perm)
print('The shift mixes across blocks. The normalizer is smaller, but assumptions may not hold')
print(sprintf('facA(1) %.3f, facB(alpha) %.3f, normalizer %.3f ',
shift_norm$facA, shift_norm$facB, shift_norm$norm))
Run the code above in your browser using DataLab