# runif() is used here for consistency with previous versions of the sicegar package. However,
# rnorm() will generate symmetric errors, producing less biased numerical parameter estimates.
# We recommend errors generated with rnorm() for any simulation studies on sicegar.
# Example 1 with double sigmoidal data
time=seq(3, 24, 0.1)
#simulate intensity data and add noise
noise_parameter <- 0.2
intensity_noise <- runif(n = length(time), min = 0, max = 1) * noise_parameter
intensity <- sicegar::doublesigmoidalFitFormula_h0(time,
finalAsymptoteIntensityRatio = .3,
maximum = 4,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8,
h0 = 1)
intensity <- intensity + intensity_noise
dataInput <- data.frame(intensity = intensity, time = time)
normalizedInput <- sicegar::normalizeData(dataInput,
dataInputName = "sample001")
# Fit sigmoidal model
sigmoidalModel <- sicegar::multipleFitFunction_h0(dataInput = normalizedInput,
model = "sigmoidal",
n_runs_min = 20,
n_runs_max = 500,
showDetails = FALSE)
# Fit double sigmoidal model
doubleSigmoidalModel <- sicegar::multipleFitFunction_h0(dataInput = normalizedInput,
model = "doublesigmoidal",
n_runs_min = 20,
n_runs_max = 500,
showDetails = FALSE)
# Calculate additional parameters
sigmoidalModel <- sicegar::parameterCalculation_h0(sigmoidalModel)
doubleSigmoidalModel <- sicegar::parameterCalculation_h0(doubleSigmoidalModel)
outputCluster <- sicegar::categorize_h0(parameterVectorSigmoidal = sigmoidalModel,
parameterVectorDoubleSigmoidal = doubleSigmoidalModel)
utils::str(outputCluster)
Run the code above in your browser using DataLab