# NOT RUN {
# cat(">Population1_sequence1",
# "TTATAAAATCTA----TAGC",
# ">Population1_sequence2",
# "TAAT----TCTA----TAAC",
# ">Population1_sequence3",
# "TTATAAAAATTA----TAGC",
# ">Population1_sequence4",
# "TAAT----TCTA----TAAC",
# ">Population2_sequence1",
# "TTAT----TCGAGGGGTAGC",
# ">Population2_sequence2",
# "TAAT----TCTA----TAAC",
# ">Population2_sequence3",
# "TTATAAAA--------TAGC",
# ">Population2_sequence4",
# "TTAT----TCGAGGGGTAGC",
# ">Population3_sequence1",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence2",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence3",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence4",
# "TTAT----TCGA----TAGC",
# file = "ex2.fas", sep = "\n")
#
# # Estimating indel distances after reading the alignment from file:
# distGap<-MCIC(input="ex2.fas",saveFile=FALSE)
# # Estimating substitution distances after reading the alignment from file:
# library(ape)
# align<-read.dna(file="ex2.fas",format="fasta")
# dist.nt<-dist.dna(align,model="raw",pairwise.deletion=TRUE)
# DISTnt<-as.matrix(dist.nt)
# # Obtaining 11 corrected combined matrices using a range of alpha values:
# nt.gap.comb(DISTgap=distGap, alpha=seq(0,1,0.1), method="Corrected",
# saveFile=FALSE, DISTnuc=DISTnt)
# # Obtaining the arithmetic mean of both matrices using both the corrected
# # and the uncorrected methods.
# nt.gap.comb(DISTgap=distGap, alpha=0.5, method="Uncorrected", saveFile=FALSE,
# DISTnuc=DISTnt)
# # Obtaining a range of combinations...
# Range01<-nt.gap.comb(DISTgap=distGap, alpha=seq(0,1,0.1), method="Uncorrected",
# saveFile=FALSE, DISTnuc=DISTnt)
# # ...and displaying the arithmetic mean (alpha=0.5 is the element number 6
# # in the resulting data frame):
# Range01[[6]]
# }
Run the code above in your browser using DataLab