# NOT RUN {
# cat(">Population1_sequence1",
# "TTATAAAATCTA----TAGC",
# ">Population1_sequence2",
# "TAAT----TCTA----TAAC",
# ">Population1_sequence3",
# "TTATAAAAATTA----TAGC",
# ">Population1_sequence4",
# "TAAT----TCTA----TAAC",
# ">Population2_sequence1",
# "TTAT----TCGAGGGGTAGC",
# ">Population2_sequence2",
# "TAAT----TCTA----TAAC",
# ">Population2_sequence3",
# "TTATAAAA--------TAGC",
# ">Population2_sequence4",
# "TTAT----TCGAGGGGTAGC",
# ">Population3_sequence1",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence2",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence3",
# "TTAT----TCGA----TAGC",
# ">Population3_sequence4",
# "TTAT----TCGA----TAGC",
# file = "ex2.fas", sep = "\n")
#
# # Estimating indel distances after reading the alignment from file:
# distGap<-MCIC(input="ex2.fas",saveFile=FALSE)
# # Estimating substitution distances after reading the alignment from file:
# library(ape)
# align<-read.dna(file="ex2.fas",format="fasta")
# dist.nt <-dist.dna(align,model="raw",pairwise.deletion=TRUE)
# DISTnt<-as.matrix(dist.nt)
#
#
# # Obtaining the arithmetic mean of both matrices using the corrected method:
# CombinedDistance<-nt.gap.comb(DISTgap=distGap, alpha=0.5, method="Corrected",
# saveFile=FALSE, DISTnuc=DISTnt)
# # Estimating the percolation threshold of the combined distance, modifying
# # labels:
# perc.thr(dis=CombinedDistance,label=paste(substr(row.names(
# CombinedDistance),11,11),substr(row.names(CombinedDistance),21,21),sep="-"))
#
# # The same network showing different modules as different colours
# # (randomly selected):
# perc.thr(dis=as.data.frame(CombinedDistance),label=paste(substr(row.names(
# as.data.frame(CombinedDistance)),11,11),substr(row.names(as.data.frame(
# CombinedDistance)),21,21),sep="-"), modules=TRUE)
#
# # The same network showing different modules as different colours
# # (defined by user):
# perc.thr(dis=as.data.frame(CombinedDistance),label=paste(substr(row.names(
# as.data.frame(CombinedDistance)),11,11),substr(row.names(as.data.frame(
# CombinedDistance)),21,21),sep="-"), modules=TRUE,moduleCol=c("pink",
# "lightblue","lightgreen"))
#
# }
Run the code above in your browser using DataLab