## Load in filtered, expression data
data(MuscleExample)
## Prepare the pathways to analyze
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodName <- "NGSk"
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"
statV <- calcTStatFast(tab, phenotype, ngroups)$tstat
res.NGSk <- calculate.NGSk(statV, gsList, nsim, verbose)
## Summarize top pathways from NGSk
res.pathways.NGSk <-
rankPathways.NGSk(res.NGSk, G, gsList, methodName, npath)
print(res.pathways.NGSk)
## Get more information about the probe sets' means and other statistics
## for the top pathway in res.pathways.NGSk
gpsList <-
getPathwayStatistics.NGSk(statV, probeID, G, res.pathways.NGSk$IndexG,
FALSE, annotpkg)
print(gpsList[[1]])
## Write table of top-ranked pathways and their associated probe sets to
## HTML files
parameterList <-
list(nprobes = nrow(tab), nsamples = ncol(tab),
phenotype = phenotype, ngroups = ngroups,
minNPS = 20, maxNPS = 500, ngs = res.NGSk$ngs,
nsim.NGSk = res.NGSk$nsim,
annotpkg = annotpkg, npath = npath, allpathways = allpathways)
writeSP(res.pathways.NGSk, gpsList, parameterList, tempdir(),
"sigPathway_cNGSk", "TopPathwaysTable.html")
Run the code above in your browser using DataLab