## Load in filtered, expression data
data(MuscleExample)
## Prepare the pathways to analyze
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)
## Calculate NTk and weighted NEk for each gene set
## * Use a higher nsim (e.g., 2500) value for more reproducible results
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodNames <- c("NTk", "NEk")
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"
res.NTk <- calculate.NTk(tab, phenotype, gsList, nsim, ngroups, verbose)
res.NEk <- calculate.NEk(tab, phenotype, gsList, nsim, weightType,
ngroups, verbose)
## Summarize results
res.pathways <- rankPathways(res.NTk, res.NEk, G, tab, phenotype,
gsList, ngroups, methodNames, npath, allpathways)
print(res.pathways)
## Get more information about the probe sets' means and other statistics
## for the top pathway in res.pathways
statList <- calcTStatFast(tab, phenotype, ngroups)
gpsList <-
getPathwayStatistics(tab, phenotype, G, res.pathways$IndexG,
ngroups, statList, FALSE, annotpkg)
print(gpsList[[1]])
## Write table of top-ranked pathways and their associated probe sets to
## HTML files
parameterList <-
list(nprobes = nrow(tab), nsamples = ncol(tab),
phenotype = phenotype, ngroups = ngroups,
minNPS = 20, maxNPS = 500, ngs = res.NTk$ngs,
nsim.NTk = res.NTk$nsim, nsim.NEk = res.NEk$nsim,
weightType = weightType,
annotpkg = annotpkg, npath = npath, allpathways = allpathways)
writeSP(res.pathways, gpsList, parameterList, tempdir(), "sigPathway_cPS",
"TopPathwaysTable.html")
Run the code above in your browser using DataLab