## Load in filtered, expression data
data(MuscleExample)
## Prepare the pathways to analyze and run analysis with 1 wrapper function
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"
res.muscle <- runSigPathway(G, 20, 500, tab, phenotype, nsim,
weightType, ngroups, npath, verbose,
allpathways, annotpkg)
## Summarize results
print(res.muscle$df.pathways)
## Get more information about the probe sets' means and other statistics
## for the top pathway in res.pathways
print(res.muscle$list.gPS[[1]])
## Write table of top-ranked pathways and their associated probe sets to
## HTML files
writeSigPathway(res.muscle, tempdir(), "sigPathway_rSP",
"TopPathwaysTable.html")
Run the code above in your browser using DataLab