Learn R Programming

sigaR (version 1.18.0)

RCMrandom: Random data from the random coefficients model.

Description

The significance of hypotheses regarding parameters of the random coefficients model is assessed by means of the parametric bootstrap. Hereto random data from the fitted model under the null hypothesis of interest are drawn. This function provides.

Usage

RCMrandom(object)

Arguments

object
Object of class rcmFit.

Value

A matrix of dimension (number of genes) times (number of samples).

Details

Details on the type of random coefficients model from which data are drawn are specified in the reference below.

References

Van Wieringen, W.N., Berkhof, J., Van de Wiel, M.A. (2010), "A random coefficients model for regional co-expression associated with DNA copy number", Statistical Applications in Genetics and Molecular Biology, Volume 9, Issue1, Article 25, 1-28.

See Also

RCMestimation, rcmFit.

Examples

Run this code
# load data
data(pollackCN16)
data(pollackGE16)

# select features belonging to a region
ids <- getSegFeatures(20, pollackCN16)

# extract segmented log2 ratios of the region
X <- t(segmented(pollackCN16)[ids[1], , drop=FALSE])

# extract segmented log2 ratios of the region
Y <- exprs(pollackGE16)[ids,]

# center the expression data (row-wise)
Y <- t(Y - apply(Y, 1, mean))

# specify the linear constraint matrix
R <- matrix(1, nrow=1)

# fit the random coefficients model to the random data
RCMresults <- RCMestimation(Y, X, R)

# draw random data
Yrandom <- RCMrandom(RCMresults)

Run the code above in your browser using DataLab