# \donttest{
if (require("BSgenome.Hsapiens.UCSC.hg19")) {
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read_maf(maf = laml.maf)
mt_tally <- sig_tally(
laml,
ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
use_syn = TRUE
)
library(NMF)
mt_sig <- sig_extract(mt_tally$nmf_matrix,
n_sig = 3,
nrun = 2,
cores = 1
)
mat <- t(mt_tally$nmf_matrix)
mat <- mat[, colSums(mat) > 0]
bt_result <- sig_fit_bootstrap_batch(mat, sig = mt_sig, n = 10)
## Parallel computation
## bt_result = sig_fit_bootstrap_batch(mat, sig = mt_sig, n = 10, use_parallel = TRUE)
## At default, mean bootstrap exposure for each sample has been calculated
p <- show_sig_bootstrap_exposure(bt_result, methods = c("QP"))
## Show bootstrap exposure (optimal exposure is shown as triangle)
p1 <- show_sig_bootstrap_exposure(bt_result, methods = c("QP"), sample = "TCGA-AB-2802")
p1
p2 <- show_sig_bootstrap_exposure(bt_result,
methods = c("QP"),
sample = "TCGA-AB-3012",
signatures = c("Sig1", "Sig2")
)
p2
## Show bootstrap error
## Similar to exposure above
p <- show_sig_bootstrap_error(bt_result, methods = c("QP"))
p
p3 <- show_sig_bootstrap_error(bt_result, methods = c("QP"), sample = "TCGA-AB-2802")
p3
## Show exposure (in)stability
p4 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"))
p4
p5 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "MAE")
p5
p6 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "AbsDiff")
p6
p7 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "CV")
p7
} else {
message("Please install package 'BSgenome.Hsapiens.UCSC.hg19' firstly!")
}
# }
Run the code above in your browser using DataLab