# Load Carpenter (2002) data
data("CarpenterFdaData")
# Load survival package
library(survival)
# Run basic model
M1 <- coxph(Surv(acttime, censor) ~ lethal*prevgenx,
data = CarpenterFdaData)
# Simulate Marginal Effect of lethal for multiple
# values of prevgenx
Sim1 <- coxsimInteract(M1, b1 = "lethal", b2 = "prevgenx",
X2 = seq(2, 115, by = 5), spin = TRUE)
## Not run:
# # Change the order of the covariates to make a more easily
# # interpretable relative hazard graph.
# M2 <- coxph(Surv(acttime, censor) ~ prevgenx*lethal +
# orphdum, data = CarpenterFdaData)
#
# # Simulate Hazard Ratio of lethal for multiple
# # values of prevgenx
# Sim2 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
# X1 = seq(2, 115, by = 2),
# X2 = c(0, 1),
# qi = "Hazard Ratio", ci = 0.9)
#
# # Simulate First Difference
# Sim3 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
# X1 = seq(2, 115, by = 2),
# X2 = c(0, 1),
# qi = "First Difference", spin = TRUE)
#
# # Simulate Hazard Rate
# Sim4 <- coxsimInteract(M2, b1 = "prevgenx", b2 = "lethal",
# X1 = 90, X2 = 1, qi = "Hazard Rate",
# means = TRUE)
# ## End(Not run)
# Example with a categorical variable
# Download data
hmohiv <- read.csv("http://www.ats.ucla.edu/stat/r/examples/asa/hmohiv.csv",
stringsAsFactors = FALSE)
# Create category lables
hmohiv$drug <- factor(hmohiv$drug, labels = c('not treated', 'treated'))
M3 <- coxph(Surv(time,censor) ~ drug*age, data = hmohiv)
# Note: Use relevant coefficient name as shown in model summary, e.g.
# 'drugtreated'.
Sim5 <- coxsimInteract(M3, b1 = "drugtreated", b2 = 'age', X2 = 20:54)
Run the code above in your browser using DataLab