Learn R Programming

simStateSpace (version 1.2.14)

SimPhiN2: Simulate Random Drift Matrices from the Multivariate Normal Distribution and Project to Hurwitz

Description

This function simulates random dirft matrices from the multivariate normal distribution then projects each draw to the Hurwitz-stable region using ProjectToHurwitz().

Usage

SimPhiN2(n, phi, vcov_phi_vec_l, margin = 0.001)

Value

Returns a list of random drift matrices.

Arguments

n

Positive integer. Number of replications.

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)).

vcov_phi_vec_l

Numeric matrix. Cholesky factorization (t(chol(vcov_phi_vec))) of the sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

margin

Positive numeric. Target buffer so that the spectral abscissa is \(\le -\text{margin}\) (default 1e-3).

Author

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(), LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

Run this code
n <- 10
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
SimPhiN2(n = n, phi = phi, vcov_phi_vec_l = vcov_phi_vec_l)

Run the code above in your browser using DataLab