# Set seed for reproducibility
set.seed(217)
# Define Simulation Parameters
N = 1000 # number of individuals
J = 6 # number of items
K = 2 # number of attributes
# Matrix where rows represent attribute classes
As = attribute_classes(K)
# Latent Class probabilities
pis = c(.1, .2, .3, .4)
# Q Matrix
Q = rbind(c(1, 0),
c(0, 1),
c(1, 0),
c(0, 1),
c(1, 1),
c(1, 1)
)
# The probabiliies of answering each item correctly for individuals
# who do not lack any required attribute
pistar = rep(.9, J)
# Penalties for failing to have each of the required attributes
rstar = .5 * Q
# Randomized alpha profiles
alpha = As[sample(1:(K ^ 2), N, replace = TRUE, pis),]
# Simulate data
rrum_items = sim_rrum_items(Q, rstar, pistar, alpha)
Run the code above in your browser using DataLab