step.age <- "Age ~ N(45, 10)"
step.female <- "Female ~ binary(0.53)"
step.health.percentile <- "Health.Percentile ~ U(0,100)"
step.exercise.sessions <- "Exercise.Sessions ~ Poisson(2)"
step.diet <- "Diet ~ sample(('Light', 'Moderate', 'Heavy'),
(0.2, 0.45, 0.35))"
step.healthy.lifestyle <- "Healthy.Lifestyle ~
logistic(log(0.45) - 0.1 * (Age -45) + 0.05 * Female +
0.01 * Health.Percentile + 0.5 * Exercise.Sessions - 0.1 *
(Diet == 'Moderate') - 0.4 * (Diet == 'Heavy'))"
step.weight <- "Weight ~ lm(150 - 15 * Female + 0.5 * Age - 0.1 *
Health.Percentile - 0.2 * Exercise.Sessions + 5 * (Diet == 'Moderate') +
15 * (Diet == 'Heavy') - 2 * Healthy.Lifestyle + N(0, 10))"
the.steps <- c(step.age, step.female, step.health.percentile,
step.exercise.sessions, step.diet, step.healthy.lifestyle, step.weight)
simdat.multivariate <- simulation.steps(the.steps = the.steps,
n = 50, num.experiments = 2, experiment.name = "sim", seed = 41)
stats.logistic <- sim.statistics.logistic(simdat =
simdat.multivariate, the.formula =
Healthy.Lifestyle ~ Age + Female + Health.Percentile + Exercise.Sessions,
grouping.variables = "sim")
analysis.logistic <- analyze.simstudy.logistic(the.coefs =
stats.logistic$the.coefs, summary.stats =
stats.logistic$summary.stats,
conf.level = 0.95, the.quantiles = c(0.1, 0.9))
Run the code above in your browser using DataLab