Learn R Programming

simitation (version 0.0.7)

analyze.simstudy.t2: analyze.simstudy.t2

Description

analyze.simstudy.t2

Usage

analyze.simstudy.t2(
  test.statistics.t2,
  alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95,
  the.quantiles = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975)
)

Value

A list containing the following elements:

  • estimate.summary: Summary statistics for the estimate.

  • stat.summary: Summary statistics for the t-test statistic.

  • df.summary: Summary statistics for the degrees of freedom.

  • p.value.summary: Data frame with proportions of tests that rejected and did not reject the null hypothesis.

  • ci.range.summary: Summary statistics for the confidence interval range.

  • ci.proportion.above.null.summary: Summary statistics for the proportion of the upper confidence limit above the null value.

  • ci.proportion.below.null.summary: Summary statistics for the proportion of the lower confidence limit below the null value.

  • ci.limit.summary: Summary statistics for either the lower or upper confidence limit, depending on the specified alternative.

Arguments

test.statistics.t2

Summary information for fitting two-sample t tests. Structure is in the form returned by the function simitation::sim.t2.test().

alternative

See help(t.test).

conf.level

See help(t.test)

the.quantiles

A numeric vector of values between 0 and 1. Summary statistics to analyze the tests will return the specified quantiles.

Examples

Run this code

simdat.t2 <- sim.t2(nx = 30, ny = 40, meanx = 0, meany = 0.2, sdx = 1,
 sdy = 1, num.experiments = 2, experiment.name = "experiment",
 group.name = "group", x.value = "x", y.value = "y", value.name = "value",
 seed = 17)


test.statistics.t2 <- sim.t2.test(simdat.t2 = simdat.t2,
alternative = "less", mu = 0, conf.level = 0.9,
experiment.name = "experiment", group.name = "group",
x.value = "x", y.value = "y", value.name = "value")

analysis.t2 <- analyze.simstudy.t2(test.statistics.t2 =
test.statistics.t2, alternative = "less", conf.level = 0.9,
the.quantiles = c(0.25, 0.5, 0.75))

Run the code above in your browser using DataLab