# NOT RUN {
# A simple example with 10 observations, 2 tracers and 4 sources
# The data
mix = matrix(c(-10.13, -10.72, -11.39, -11.18, -10.81, -10.7, -10.54,
-10.48, -9.93, -9.37, 11.59, 11.01, 10.59, 10.97, 11.52, 11.89,
11.73, 10.89, 11.05, 12.3), ncol=2, nrow=10)
colnames(mix) = c('d13C','d15N')
s_names=c('Source A','Source B','Source C','Source D')
s_means = matrix(c(-14, -15.1, -11.03, -14.44, 3.06, 7.05, 13.72, 5.96), ncol=2, nrow=4)
s_sds = matrix(c(0.48, 0.38, 0.48, 0.43, 0.46, 0.39, 0.42, 0.48), ncol=2, nrow=4)
c_means = matrix(c(2.63, 1.59, 3.41, 3.04, 3.28, 2.34, 2.14, 2.36), ncol=2, nrow=4)
c_sds = matrix(c(0.41, 0.44, 0.34, 0.46, 0.46, 0.48, 0.46, 0.66), ncol=2, nrow=4)
conc = matrix(c(0.02, 0.1, 0.12, 0.04, 0.02, 0.1, 0.09, 0.05), ncol=2, nrow=4)
# Load into simmr
simmr_1 = simmr_load(mixtures=mix,
source_names=s_names,
source_means=s_means,
source_sds=s_sds,
correction_means=c_means,
correction_sds=c_sds,
concentration_means = conc)
# Plot
plot(simmr_1)
# MCMC run
simmr_1_out = simmr_mcmc(simmr_1)
# Summarise
summary(simmr_1_out) # This outputs all the summaries
summary(simmr_1_out,type='diagnostics') # Just the diagnostics
ans = summary(simmr_1_out,type=c('quantiles','statistics')) # Store the output in an object
# }
Run the code above in your browser using DataLab