# \donttest{
# Data set: 10 observations, 2 tracers, 4 sources
data(geese_data_day1)
simmr_1 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)
# Look at the prior influence
prior_viz(simmr_1_out)
# Summary
summary(simmr_1_out, "quantiles")
# A bit vague:
# 2.5% 25% 50% 75% 97.5%
# Source A 0.029 0.115 0.203 0.312 0.498
# Source B 0.146 0.232 0.284 0.338 0.453
# Source C 0.216 0.255 0.275 0.296 0.342
# Source D 0.032 0.123 0.205 0.299 0.465
# Now suppose I had prior information that:
# proportion means = 0.5,0.2,0.2,0.1
# proportion sds = 0.08,0.02,0.01,0.02
prior <- simmr_elicit(4, c(0.5, 0.2, 0.2, 0.1), c(0.08, 0.02, 0.01, 0.02))
simmr_1a_out <- simmr_mcmc(simmr_1, prior_control =
list(means = prior$mean,
sd = prior$sd,
sigma_shape = c(3,3),
sigma_rate = c(3/50, 3/50)))
#' # Look at the prior influence now
prior_viz(simmr_1a_out)
summary(simmr_1a_out, "quantiles")
# Much more precise:
# 2.5% 25% 50% 75% 97.5%
# Source A 0.441 0.494 0.523 0.553 0.610
# Source B 0.144 0.173 0.188 0.204 0.236
# Source C 0.160 0.183 0.196 0.207 0.228
# Source D 0.060 0.079 0.091 0.105 0.135
# }
Run the code above in your browser using DataLab