if (FALSE) {
## See the package vignette for a detailed run through of these 4 examples
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
simmr_1 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_1)
# Print
simmr_1
# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)
# Print it
print(simmr_1_out)
# Summary
summary(simmr_1_out, type = "diagnostics")
summary(simmr_1_out, type = "correlations")
summary(simmr_1_out, type = "statistics")
ans <- summary(simmr_1_out, type = c("quantiles", "statistics"))
# Plot
plot(simmr_1_out, type = "boxplot")
plot(simmr_1_out, type = "histogram")
plot(simmr_1_out, type = "density")
plot(simmr_1_out, type = "matrix")
# Compare two sources
compare_sources(simmr_1_out, source_names = c("Zostera", "Enteromorpha"))
# Compare multiple sources
compare_sources(simmr_1_out)
#####################################################################################
# A version with just one observation
data(geese_data_day1)
simmr_2 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures[1, , drop = FALSE],
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_2)
# MCMC run - automatically detects the single observation
simmr_2_out <- simmr_mcmc(simmr_2)
# Print it
print(simmr_2_out)
# Summary
summary(simmr_2_out)
summary(simmr_2_out, type = "diagnostics")
ans <- summary(simmr_2_out, type = c("quantiles"))
# Plot
plot(simmr_2_out)
plot(simmr_2_out, type = "boxplot")
plot(simmr_2_out, type = "histogram")
plot(simmr_2_out, type = "density")
plot(simmr_2_out, type = "matrix")
#####################################################################################
# Data set 2: 3 isotopes (d13C, d15N and d34S), 30 observations, 4 sources
data(simmr_data_2)
simmr_3 <- with(
simmr_data_2,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Get summary
print(simmr_3)
# Plot 3 times
plot(simmr_3)
plot(simmr_3, tracers = c(2, 3))
plot(simmr_3, tracers = c(1, 3))
# See vignette('simmr') for fancier axis labels
# MCMC run
simmr_3_out <- simmr_mcmc(simmr_3)
# Print it
print(simmr_3_out)
# Summary
summary(simmr_3_out)
summary(simmr_3_out, type = "diagnostics")
summary(simmr_3_out, type = "quantiles")
summary(simmr_3_out, type = "correlations")
# Plot
plot(simmr_3_out)
plot(simmr_3_out, type = "boxplot")
plot(simmr_3_out, type = "histogram")
plot(simmr_3_out, type = "density")
plot(simmr_3_out, type = "matrix")
#####################################################################################
# Data set 5 - Multiple groups Geese data from Inger et al 2006
# Do this in raw data format - Note that there's quite a few mixtures!
data(geese_data)
simmr_5 <- with(
geese_data,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means,
group = groups
)
)
# Plot
plot(simmr_5,
xlab = expression(paste(delta^13, "C (per mille)", sep = "")),
ylab = expression(paste(delta^15, "N (per mille)", sep = "")),
title = "Isospace plot of Inger et al Geese data"
)
# Run MCMC for each group
simmr_5_out <- simmr_mcmc(simmr_5)
# Summarise output
summary(simmr_5_out, type = "quantiles", group = 1)
summary(simmr_5_out, type = "quantiles", group = c(1, 3))
summary(simmr_5_out, type = c("quantiles", "statistics"), group = c(1, 3))
# Plot - only a single group allowed
plot(simmr_5_out, type = "boxplot", group = 2, title = "simmr output group 2")
plot(simmr_5_out, type = c("density", "matrix"), grp = 6, title = "simmr output group 6")
# Compare sources within a group
compare_sources(simmr_5_out, source_names = c("Zostera", "U.lactuca"), group = 2)
compare_sources(simmr_5_out, group = 2)
# Compare between groups
compare_groups(simmr_5_out, source = "Zostera", groups = 1:2)
compare_groups(simmr_5_out, source = "Zostera", groups = 1:3)
compare_groups(simmr_5_out, source = "U.lactuca", groups = c(4:5, 7, 2))
}
Run the code above in your browser using DataLab