Learn R Programming

simpleNeural (version 0.1.3)

UCI.ISOLET.ABC: ISOLET Data Set (ABC)

Description

This data set was generated as follows. 150 subjects spoke the name of each letter of the alphabet twice. Hence, we have 52 training examples from each speaker.

Usage

data(UCI.ISOLET.ABC)

Arguments

Format

A data frame with 900 rows and 618 variables

Details

To reduce package size, only the 3 first letters are included here. The full dataset can be obtained from http://archive.ics.uci.edu/ml/datasets/ISOLET.

The features are described in the paper by Cole and Fanty cited below. The features include spectral coefficients; contour features, sonorant features, pre-sonorant features, and post-sonorant features. Exact order of appearance of the features is not known.

References

Fanty, M., Cole, R. (1991). Spoken letter recognition. In Lippman, R. P., Moody, J., and Touretzky, D. S. (Eds). Advances in Neural Information Processing Systems 3. San Mateo, CA: Morgan Kaufmann. [http://rexa.info/paper/bee6de062d0d168c5c5b5290b11cd6b12ca8472e]

Examples

Run this code
# NOT RUN {
# NB: 50 iterations isn't enough in this case,
# it was chosen so that the example runs fast enough on CRAN check farm
data(UCI.ISOLET.ABC);
X=as.matrix(sN.normalizeDF(as.data.frame(UCI.ISOLET.ABC[,1:617])));
y=as.matrix(UCI.ISOLET.ABC[,618]-1);
myMLP=sN.MLPtrain(X=X,y=y,hidden_layer_size=20,it=50,lambda=0.5,alpha=0.5);
myPrediction=sN.MLPpredict(nnModel=myMLP,X=X,raw=FALSE);
table(y,myPrediction);
# }

Run the code above in your browser using DataLab